
Strengthening Deep-Learning-Based
Malware Detection Models Against
Adversarial Attacks

Rohit Pai, Mahipal Purohit, and Preetida Vinayakray-Jani

1 Introduction

In 2019, 2 billion computers were present globally, including servers, desktops,
and laptops [15]. It means that there are many attack surfaces, and it is of utmost
importance to protect these devices. One of the many ways in which attackers
infiltrate a system is by using malware. Malware is any software intentionally
designed to cause damage to a computer, server, client, or computer network [1].
Malware is one of the biggest threats to computer security [2] in this age, and we
must find effective ways to detect and tackle it.

Two major approaches have been used in the past to detect malware: static
analysis and dynamic analysis. Static analysis involves using metadata, unique data,
or bits of code to identify malware and create signatures and heuristics. Dynamic
analysis involves executing the malware in a sandbox environment such as a virtual
machine to observe its behavior and determine its malignity. These traditional
methods could not keep up with the growth of malware and their variants, and
alternative faster methods were needed.

Machine learning and deep learning algorithms were explored as an alternative
to traditional approaches as they gave exceptional results in detecting and predicting
hidden patterns. Deep learning was preferred to standard machine learning due to
its ability to learn complex features and deliver high-quality results. Classical deep
learning models gave exceptional results in malware detection but failed against
variants of the existing malware families and were susceptible to well-crafted
adversarial samples.

R. Pai (�) · M. Purohit · P. Vinayakray-Jani
Sardar Patel Institute of Technology, Mumbai, India
e-mail: rohit.pai@spit.ac.in; mahipal.purohit@spit.ac.in; preeti.vinayakray@spit.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Misra et al. (eds.), Advances in Data Science and Artificial Intelligence,
Springer Proceedings in Mathematics & Statistics 403,
https://doi.org/10.1007/978-3-031-16178-0_15

203


 31368 2385 a 31368 2385
a
 
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16178-0_15&domain=pdf

 885
55738 a 885 55738 a
 
mailto:rohit.pai@spit.ac.in
mailto:rohit.pai@spit.ac.in
mailto:rohit.pai@spit.ac.in
mailto:rohit.pai@spit.ac.in

 8809 55738 a 8809 55738
a
 
mailto:mahipal.purohit@spit.ac.in
mailto:mahipal.purohit@spit.ac.in
mailto:mahipal.purohit@spit.ac.in
mailto:mahipal.purohit@spit.ac.in

 19555 55738 a 19555 55738 a
 
mailto:preeti.vinayakray@spit.ac.in
mailto:preeti.vinayakray@spit.ac.in
mailto:preeti.vinayakray@spit.ac.in
mailto:preeti.vinayakray@spit.ac.in
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15
https://doi.org/10.1007/978-3-031-16178-0_15


204 R. Pai et al.

Generative adversarial network or GAN is the perfect solution to the problem
faced by classical deep learning models. Initially proposed by Goodfellow et al.
[14] in 2014, GANs can be described as a machine learning system where two
neural networks, a generator, and a discriminator, compete. In the end, the generator
becomes capable of generating samples that are close to real-life samples, and the
discriminator becomes a great classifier. Due to adversarial training, GANs prove to
be very effective against variants and obfuscated malware [4, 5]. The existing GAN-
based solutions are limited due to being trained on smaller and older datasets, and
there is need for newer models.

We take inspiration from the architecture proposed by Kim et al. [4] and tune it
to create a novel system that is trained on a state-of-the-art dataset [10]. Utilizing
adversarial training of GANs and a variety of malicious samples allows our model to
detect a wide range of malware and be viable for a long time. Our main contribution
is devising a robust system that identifies 11 types of malware within a malicious
sample (i.e., multilabel classification) with a high degree of certainty and a low
response time.

2 Background

The main objective of the survey was to find the extent of research done in the
malware detection domain across academia and the industry, compare them, discuss
their pros and cons, and find solutions to the existing problems. Papers [11] and
[12] are survey papers compiling the existing results and techniques in academia
till date. Papers [3–5] represent the state-of-the-art techniques in this domain. Paper
[7] provides insights into how malware detection models can be attacked and how
one can protect and improve them. Lastly, paper [9] represents the progress of the
industry in malware detection.

The survey done by D. Gilbert et al [11]. provides a systematic review of machine
learning and deep learning techniques used for malware detection and classification.
The authors have studied 67 papers that use various static, dynamic, and hybrid
approaches for malware analysis. They present the issues and challenges with each
type of technique and provide several research gaps. First, class imbalance in the
existing datasets was identified as a major gap. Second, there were no benchmark
real-world datasets available for malware detection to train the machine learning
models. There are services that provide malware binaries freely, but obtaining
benign samples is a hassle. Additionally, classifying a file as benign or malicious
and classifying a malicious file to its family are time-consuming processes, even for
a security expert. Furthermore, there is discrepancy between each dataset’s labeling
approach that makes it impossible to meaningfully compare the accuracy across
different works. Third, malware tends to evolve over time, and new variants and
families appear periodically. The machine learning models need to be periodically
retrained over time to keep up with this pattern. Lastly, malware authors make
the feature representation of a malicious file very similar to that of a benign



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 205

file. Recently created classifiers could be easily fooled by well-crafted adversarial
samples, and there is a need for adversarial training of the models.

R. Komatwar et al. [12] begin by surveying various categories of malware and
classify them into 3 types: malware by platform, malware by fiction, and malware
by stubs. A notable point is that across all categories, the attackers use various
packing techniques to hide the presence of malware. The authors proceed to analyze
the existing static and dynamic techniques of malware detection including various
machine learning approaches such as K-means, decision tree, ANN, neuro-fuzzy
networks, etc. They also provide a comprehensive analysis of the existing malware
image creation and classification techniques. They emphasize on the need to classify
malware as images. They state that existing techniques have loopholes that the
hackers can exploit, and there is a need for new, complementary, and orthogonal
techniques to defeat them.

Z. Cui et al. [3] propose a CNN-based approach to detect malware. Their model
is trained using a dataset of over 9342 grayscale images. To avoid the problem of
overfitting, they use image augmentation techniques such as rotation, width and
height shift, rescale, shear, etc. The authors created models using images of sizes
24 × 24, 48 × 48, 96 × 96, and 192 × 192 and compared their results. The authors
found out that as the image size increases, the performance of the model becomes
better, but the training time also increases. The authors settled on 96×96 as the final
image size due to an equal trade-off between performance and time. The authors also
make use of the Bat algorithm to handle class imbalance over multiple families of
malware. Their model classifies 25 malware families with an accuracy of 94.5%.
The authors demonstrate that the model achieved better accuracy and speed when
compared to other malware detection models. This model lacks due to being trained
on a limited number of samples and having no adversarial training.

J.-Y. Kim et al. [4] propose a new GAN-based model called tDCGAN, capable of
classifying malware and detecting zero-day attacks within 9 malware families. The
authors first convert the malicious executable files into images of size 63*135. A
deep autoencoder (DAE) is trained on the dataset, and it learns to pick up important
features from the image and tries to reconstruct the same image from the latent
representation. The decoder of the DAE is used as the generator of the GAN as
it stabilizes the learning process of the GAN. The GAN is then trained, and the
discriminator of the GAN is used for malware detection. This system achieves an
average classification accuracy of 95.74%. The authors test the resistance of the
model against zero-day attacks by adding noise to the existing malware and testing
them against the system. The authors compare the performance of their system vs.
other machine learning and deep learning techniques and conclude that their system
is better even in case of zero-day attacks because of the inherent adversarial training.
The main drawbacks of this chapter are the limited number of malware families and
the inability to classify samples as benign or malicious.

LSC-GAN proposed by J. Kim and S. Cho [5] is capable of detecting and
classifying malware within 9 families. It achieves an average classification accuracy
of 96.97%. The drawbacks of this model are that it requires the input malware



206 R. Pai et al.

images of the same size and that the malicious examples generated by the GAN
for training may not be malicious in practice.

R. Podschwadt et al. [7] studied 12 techniques of crafting adversarial examples
and 4 defensive techniques that may withstand such attacks on different datasets.
The authors found that generating adversarial samples and attacking models are far
easier tasks than defending them. The paper demonstrated that adversarial training
was the most effective and efficient defense for image-based classifiers. The paper
stated a need for approaches tailored toward classifiers based on binary data.

Kaspersky is one of the leading anti-virus vendors in the industry. In one of
their white papers [9], they give an overview of how machine learning is used for
malware detection. They highlight the salient challenges in building a machine-
learning-based malware detection model. They give us an insight into the malware
detection techniques used by Kaspersky.

After a thorough literature survey, we observed the need to focus on classifying
and detecting malware as images [12] and defending such models by using
adversarial training [7]. This need was somewhat satisfied by the models proposed
in papers [4] and [5], but these papers lack due to being trained on much smaller
and older datasets. There is a need for models trained on newer, larger, and diverse
malware datasets containing real-world malicious samples [11] to be viable in the
future. There was a stark difference in the quality of models between the anti-
malware industry [9] and academia due to the lack of high-quality and large datasets.
This gap significantly narrowed when SOPHOS released the SOREL-20M dataset.
This gave researchers like us the access to 10 million malicious samples to create
drastically better models. We apply the learnings gained through the literature
survey on this dataset and propose our system to enhance their work.

The remaining chapter is organized as follows. Section 3 describes the design
of our proposed system. In Sect. 4, the technical details and relevant theory of the
dataset and the components of our system are presented. The results obtained from
training, testing, and validation of the malware classification system are presented
in Sect. 5. The user facing component of this system is also shown here. Section 6
summarizes the proposed work and the principal findings of our research. The
promising research directions and further improvements in this project are also
presented here.

3 Proposed Design

Figure 1 shows the overview of our proposed malware classification model. It
consists of 4 main components: creation of malware images, autoencoder, GAN,
and malware classifier.

The process begins by creating malware images. The binary malware executable
files are collected from the SOREL- 20M dataset repository, and we convert them
into images using a custom algorithm. We proceed to train the autoencoder using
these images. The autoencoder converts these images into a latent representation of



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 207

Fig. 1 Proposed model

128 dimensions and converts them back into images. The weights of the decoder
are then transferred to the generator. This process provides stability to the training
process of the GAN and helps it converge. The GAN model is now trained, and the
discriminator of the GANmodel is taken out and used for the malware classification.
We proceed to describe in detail each phase of the model.

3.1 Creation of Malware Images

As stated earlier, we use SOREL-20M as the dataset for our model. We obtained
the binary executable malware files from the dataset’s online repository. These files
are stored in zlib compressed format to avoid accidental execution of malware. We
began by decompressing these files and obtained binary strings (consisting of 0s
and 1s) of the malicious code. These strings were converted into grayscale images
by forming groups of 8 bits (1 byte) and converting each group to its decimal
representation (an integer from 0 to 255). This integer represents the pixel value
in the images. Since the length of each binary string may vary, we cannot convert
them to images as it is. We need a standardized width or height for the images and
pad the missing bits to the strings. We choose to fix the width and vary the height to
ensure that the horizontal features of image are preserved. The width of the image
is calculated using Table 1. Note that the file size and the length of the binary string
are one and the same.

Once the width of the image is obtained, the number of padded bits is obtained
using the following equation:

.padding bits = image width − (f ile size % image width).

After these calculations, we pad the bits to the binary string and create a
grayscale image with the calculated width. Since we use convolutional layers in
the subsequent phases, we need all the malware images to be of the same size. After



208 R. Pai et al.

Table 1 Image width for different file sizes

File size Image width File size Image width

≤10KB 32 200KB ∼ 500KB 512

10KB ∼ 30KB 64 500KB ∼ 1000KB 768

30KB ∼ 60KB 128 1000KB ∼ 2000KB 1024

60KB ∼ 100KB 256 ≥2000KB 2048

100KB ∼200KB 384

Fig. 2 Architecture of autoencoder

working with several image sizes, we concluded that smaller image sizes provided
less precision, recall, and F1 score, while larger image sizes took more time to train.
We finally chose 64× 64 as our final image size since it was best trade-off between
the training time and the evaluation metrics. We resized all the images using cubic
and area interpolation. Cubic interpolation was used when image width was less
than 64 and area interpolation was used in all other cases. The resized images are
then fed to the autoencoder, GAN, and malware classifier for training, testing, and
validation.

3.2 Autoencoder

Autoencoders are a type of neural network used to compress the raw data (usually
images) and reconstruct it from the compressed form [16]. It consists of two parts:
an encoder and a decoder. The encoder compresses the input data to the latent
representation by retaining only the most important features, and the decoder tries
to reconstruct the original data from this latent representation. Once fully trained,
the decoder has the ability to independently generate instances of the original
dataset from the latent representation. The architecture of the proposed system’s
autoencoder is shown in Fig. 2.

As done previously by J.-Y. Kim et al. [4], we leverage this ability of the
autoencoder to create a decoder capable of generating malware images from a latent
representation of 128 dimensions. We transfer the weights of this decoder to the



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 209

generator of the GAN. This gives it a great starting point and helps stabilize the
training process of the GAN.

3.3 GAN

A GAN consists of two parts: the generative network and the discriminative
network, called generator and discriminator, respectively. These two halves train
by competing with each other. The task of generator is to generate images that are
very close to the dataset provided and fool the discriminator. It creates fake data, and
this data along with the actual data from the dataset is fed into the discriminator. The
task of the discriminator is to correctly distinguish between the real and fake data.
This is very similar to a zero-sum game [17].

We identified the need of using adversarial training on machine learning models
in our literature survey. We found that GANs inherently make use of adversarial
training and that using them would make our models more robust and resistant to
adversarial attacks. This feature is lacking in any other deep learning algorithm and
motivated us to use GANs. Hence, we use the GAN in our proposed system to
perform adversarial training on the discriminator.

The generator generates fake images using noise vector of size 128 dimensions.
Since we previously performed transfer learning on the generator, the generator is
capable of producing images that are very close to real malware images and may
even resemble variants of malware families. The discriminator is trained using these
generated and real malware images. After sufficient epochs, the discriminator is able
to recognize these types of malware images with ease. Transferring these weights to
the malware classifier helps it in classifying malware present in the dataset as well
as unseen variants of malware that may occur in the future. Figures 3 and 4 show
the architecture of our system’s generator and discriminator.

3.4 Malware Classifier

The malware classifier is the final module of the proposed system and performs the
classification of the malicious samples to their respective types of malware. Figure 5
shows the general structure of the malware classifier model in our system.

We transfer the weights obtained from the discriminator to the malware classifier.
The last layer of the discriminator is replaced by a new fully connected dense layer
of size 11, as seen in the figure. This allows the classifier to predict the 11 types
of malware and perform multilabel classification. This classifier is much better than
any CNN counterpart due to the use of adversarial training.



210 R. Pai et al.

Fig. 3 Architecture of generator

Fig. 4 Architecture of discriminator



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 211

Fig. 5 Architecture of malware classifier

4 Experiments

4.1 Dataset

The SOREL-20M dataset consists of 10 million malicious binary executable files
for Windows operating system. It is one of its kind since it provides access to such
a large quantity of data for academic research. The dataset provides a database file
consisting of the hash value, first seen time, and 11 columns for adware, flooder,
ransomware, dropper, spyware, packed, crypto_miner, file_infector, installer,
worm, and downloader for each malicious file. The columns of the types of malware
in these records show the certainty with which each file belongs to a particular type.
The higher the number, the higher the certainty. We converted each non-zero value
in these columns to a 1 and used it as the labels. Since this dataset contains files with
more than one type of malware in it, we chose to perform multilabel classification.

It was infeasible for us to use the entire dataset at this moment since its size is
about 8 terabytes. Hence, we chose to train our model on 2 subsets of the dataset:
random 10,000 files and the first 100,000 files by first seen time of the malware.
The count of each label in the first 100,000 files is shown in Fig. 6. We set aside
the first 76.6% of the files as the training set, the next 9.7% as the testing set, and
the remaining 13.7% as the validation set [10]. Some of the sample types of files
(containing 1 or more types of malware in it) are shown in Table 2 along with their
images and its frequency within our subset of 100,000 files. Files containing the
malware Spyware, File Infector, and Worm were the most frequent in this subset,



212 R. Pai et al.

Fig. 6 Label counts for the first 100,000 files

while those containing solely Cryptominer or Flooder were the least frequent. We
can see from Table 2 that even though files have the same type of malware, their
images are very different.

4.2 Experiment Details

All of our experiments were performed using free cloud resources on Kaggle,
Google Colab, and Google Cloud. We used the available GPUs to drastically speed
up our training times.

We used the Keras library to create all of our models. Convolutional layers
form the basis of all of our models since they are key in extracting the important
features from the malware images. LeakyReLU was used as the activation function
for all convolutional layers except the output layer. LeakyReLU was used instead of
ReLU to avoid the dying ReLU problem. Sigmoid function is used as the activation
function for the output layer since we are performing multilabel classification.
Dropout layer is used after each convolutional layer for regularization and stable
learning. Batch normalization layers are added after the dropout layers in the
encoder, discriminator, and malware classifier to avoid overfitting. Deconvolution
layers were used to rescale and obtain back the images of actual size. We used
a stride instead of pooling layers to perform downsampling while training the
models:



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 213

Table 2 Sample types of files with their frequency and images

Type of malware No. of data (no. of test data) Sample images of each type

Spyware, File
Infector, and
Worm

11,257 (1086)

Adware 8228 (814)

Ransomware,
Packed, and File
Infector

6566 (641)

Spyware and File
Infector

6187 (573)

Adware and
Installer

3719 (364)

Dropper,
Spyware, and
Packed

3150 (310)

Spyware and
Worm

2430 (234)

File Infector 2219 (218)

Packed 2073 (196)

Adware, Installer,
and Downloader

2046 (226)

Flooder and
Packed

135 (7)

Cryptominer 20 (3)

– Autoencoder

• Encoder: 4× 4Conv@64 .→ 4× 4Conv@128 .→ 4× 4Conv@128 .→ Flatten
to size 8192 .→ Fully connected layer of size 128

• Decoder: Fully connected layer of size 8192 .→ 4 × 4DeConv@128 .→ 4 ×
4DeConv@256 .→ 4 × 4DeConv@512 .→ 5 × 5Conv@1



214 R. Pai et al.

– GAN

• Generator: Same as autoencoder’s decoder
• Discriminator: 4 × 4Conv@64 .→ 4 × 4Conv@128 .→ 4 × 4Conv@128 .→

Flatten to size 8192 .→ Fully connected layer of size 1

– Malware Classifier

• Decoder: 4× 4Conv@64 .→ 4× 4Conv@128 .→ 4× 4Conv@128 .→ Flatten
to size 8192 .→ Fully connected layer of size 11

The batch size was set at 32 for all the models. We used the Adam optimizer for
training the models with beta_1 = 0.5 and loss function set as Binary Crossentropy.
The learning rate was set to 10−4 for the autoencoder, the generator, and the
discriminator. The autoencoder is trained for 150 epochs, while the GAN is trained
for 200 epochs. In case of the malware classifier, the training is done in 2 phases.
First, all the layers except the dense layer of size 11 are frozen. The model is then
trained for 500 epochs with learning rate set to 10−3. Second, the remaining layers
are unfrozen, and the model is trained again for 400 epochs at a much lower learning
rate of 10−5 to fine-tune it. We note that fine-tuning improved the results of the
malware classifier.

5 System Evaluation and Results

We trained our proposed model on random 10,000 samples and the first 100,000
samples by first seen time of the malware. We also compared the performance of our
model with a CNN model trained on the same random 10,000 samples. Referring to
similar works on multilabel classification [18, 19], we chose the average per-class
precision (CP), recall (CR), F1 score (CF1), false-positive rate (CFPR), the average
overall precision (OP), recall (OR), F1 score (OF1), false-positive rate (OFPR) as
the metrics to evaluate the performance of our classifier.

Table 3 shows detailed class-wise metrics for the model trained on 100,000
samples for reference. Spyware and File Infector show the best results as they are
most dominating types in the dataset. Flooder and Cryptominer perform badly due
to the lack of samples in this subset, as seen in Fig. 6. This behavior may change
when the number of samples is increased.

Table 4 shows the average and overall metrics of all the models. Our proposed
models perform much better than the standard CNN model. This justifies the usage
of the autoencoder and the GAN in our system.

The metrics for both the proposed models show that our model is able to perform
multilabel classification on the given dataset with a relatively high precision, recall,
and F1 score and low false-positive rate. The proposed model trained on 100,000
samples performs better than the model trained on 10,000 samples in all metrics
except CR and CF1. This is due to drop in precision and recall of the Flooder and



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 215

Ta
bl
e
3

M
et
ri
cs

of
th
e
m
od
el
cr
ea
te
d
us
in
g
10
0,
00
0
sa
m
pl
es

A
dw

ar
e

Fl
oo
de
r

R
an
so
m
w
ar
e

D
ro
pp
er

Sp
yw

ar
e

Pa
ck
ed

C
ry
pt
o
M
in
er

Fi
le
In
fe
ct
or

In
st
al
le
r

W
or
m

D
ow

nl
oa
de
r

Pr
ec
is
io
n

0.
84
74

0.
48
72

0.
86
20

0.
80
43

0.
90
19

0.
83
11

0.
22
92

0.
89
66

0.
77
53

0.
88
73

0.
75
85

R
ec
al
l

0.
82
67

0.
40
43

0.
86
77

0.
76
96

0.
87
36

0.
84
59

0.
17
46

0.
88
94

0.
78
73

0.
88
52

0.
73
91

F1
sc
or
e

0.
83
7

0.
44
19

0.
86
48

0.
78
66

0.
88
75

0.
83
85

0.
19
82

0.
89
30

0.
78
12

0.
88
63

0.
74
87

Fa
ls
e-
Po

si
tiv

e
ra
te

0.
06
4

0.
00
25

0.
02
18

0.
06
01

0.
10
80

0.
09
2

0.
00
47

0.
06
58

0.
03
68

0.
05
22

0.
05
24



216 R. Pai et al.

Table 4 Comparing the results of various models

CP CR CF1 CFPR OP OR OF1 OFPR

CNN—10k Samples 0.7141 0.6808 0.6962 0.0730 0.7961 0.7703 0.7830 0.0613

Proposed model—10k samples 0.7368 0.7627 0.7489 0.0654 0.8165 0.7984 0.8074 0.0558

Proposed Model—100k samples 0.7528 0.7330 0.7422 0.0509 0.8410 0.8531 0.8470 0.0449

The bold values indicate the best value in a given metric amongst the 3 models

Fig. 7 Landing page of the Web portal

Crypto types of malware, caused by the low count. Hence, this affects only the
average metrics and not the overall metrics.

We also deployed the proposed model trained on 100k samples on a website
where end users can upload any binary executable file and obtain detailed results
on the probability of the file belonging to each type of malware. We created this
lightweight web application using Flask. Figure 7 shows the landing page of our
website.

By clicking on upload file option, the user can upload a file from their own
machine to the website’s server. The website converts the file into an 64× 64 image
using the algorithm stated in Sect. 3.1 and predicts the types of malware present in
the file using the malware classification model.

We obtained results for some samples from the test dataset. Here, we discuss the
results for one such sample. Figure 8 shows the actual image of the malware on
the left side, before resizing it to 64 × 64, and the images on the right side are the
classification results that are obtained.

The results show 11 probabilities of a malware belonging to a specific type. As
can be seen from the figure, the classifier predicts with 100% probability that the file
belongs to File Infector and Spyware types and does not belong to any other type
with 100% probability, which is the ideal result.



Strengthening Deep-Learning-Based Malware Detection Models Against. . . 217

Fig. 8 Results of classification of a malware belonging to Spyware and File Infector types

The website has been designed to be easy-to-use and hassle-free, allowing
ordinary users to check the malignity of any file quickly without taking the risk
of executing the file. We observe that the main bottleneck of the website is while
uploading the file to the server and once a file is uploaded, the system can produce
results rapidly.

6 Conclusion and Future Scope

After a thorough literature survey, we observed that the latest malware detection
methods have various machine learning and deep learning models at their core.
Most of these models have the common issue of failing against specially crafted
adversarial samples and variants of the existing malware families. Moreover, the
existing models were trained on older and much smaller datasets. There was a need
for models that could withstand such attacks while providing a low false-positive
rate, accurate results, scalability, and a fast response time.

Our proposed system is trained on a massive dataset with various types and
families of malware and utilizes the power of autoencoders and the adversarial
training of GANs to solve this problem. It is designed to identify all types of
malware present within a malicious sample with a high degree of certainty. Our best
model achieves an overall precision of 84.1%, an overall recall of 85.31%, an overall
F1 score of 84.7%, and a false-positive rate of 4.49%, outperforming conventional
neural network models. It is deployed on a website, allowing the end users to upload
any executable file to the website and check its malignity. Due to the use of GANs,



218 R. Pai et al.

the model will withstand future variants within the malware families and be viable
for a long time in the future.

In the future, we will explore the effect of larger image sizes such as 192 ×
192 and 384 × 384 on the model. Further, we used a subset and not the entire
SOREL-20M dataset, which limited our model. We plan to explore the effect of
training a model with such a large number of samples. We also need to manually
test our model against well-known adversarial attacks to strengthen it. Lastly we
intend to expand our model by integrating benign samples into the training process.
This would ensure that the model becomes a full-fledged malware detection system
and can distinguish between malicious and benign files.

References

1. Wikipedia Contributors. “Malware”, in Wikipedia, The Free Encyclopedia. Accessed: Jul.
13, 2021. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Malware&oldid=
1033368871

2. “What Happens If Your Computer Is Infected by Malware?”, Consolidated Technologies, Inc.
Accessed: Jun. 15, 2021. [Online]. Available: https://consoltech.com/blog/what-happens-if-
your-computer-is-infected-by-malware

3. Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang and J. Chen, “Detection of Malicious Code Variants
Based on Deep Learning”, IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp.
3187–3196, July 2018, https://doi.org/10.1109/TII.2018.2822680.

4. J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using transferred generative
adversarial networks based on deep autoencoders”, Information Sciences, vol. 460–461, pp.
83–102, Sep. 2018, https://doi.org/10.1016/j.ins.2018.04.092.

5. J.-Y. Kim and S.-B. Cho, “Detecting Intrusive Malware with a Hybrid Generative Deep
Learning Model”, in Intelligent Data Engineering and Automated Learning - IDEAL 2018,
Springer International Publishing, 2018, pp. 499–507. https://doi.org/10.1007/978-3-030-
03493-1_52.

6. J. Yuan, S. Zhou, L. Lin, F. Wang, and J. Cui, “Black-box adversarial attacks against deep
learning based malware binaries detection with GAN,” in the 24th European Conference on
Artificial Intelligence (ECAI 2020), pp. 2536–2542, https://doi.org/10.3233/FAIA200388.

7. R. Podschwadt and H. Takabi, “Effectiveness of Adversarial Examples and Defenses for
Malware Classification,” arXiv:1909.04778 [cs], Sep. 2019.

8. H. Li, S. Zhou, W. Yuan, J. Li and H. Leung, “Adversarial-Example Attacks Toward Android
Malware Detection System,” in IEEE Systems Journal, vol. 14, no. 1, pp. 653–656, March
2020, https://doi.org/10.1109/JSYST.2019.2906120.

9. “Machine Learning Methods for Malware Detection,” Kaspersky Lab, Moscow, Russia.
Accessed: Jun. 14, 2021. [Online]. Available: https://media.kaspersky.com/en/enterprise-
security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf

10. R. Harang and E. M. Ruddy, “SOREL-20M: A Large Scale Benchmark Dataset For Malicious
PE Detection,” arXiv:2012.07634v1 [cs.CR], Dec. 2020.

11. D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and
classification of malware: Research developments, trends and challenges,” Journal of Network
and Computer Applications, vol. 153, p. 102526, Mar. 2020, https://doi.org/10.1016/j.jnca.
2019.102526

12. R. Komatwar and M. Kokare, “A Survey on Malware Detection and Classification,” Journal
of Applied Security Research, vol. 16, no. 3, pp. 390–420, Aug. 2020, https://doi.org/10.1080/
19361610.2020.1796162

https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://en.wikipedia.org/w/index.php?title=Malware&oldid=1033368871
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://consoltech.com/blog/what-happens-if-your-computer-is-infected-by-malware
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.1007/978-3-030-03493-1_52
https://doi.org/10.3233/FAIA200388
https://doi.org/10.3233/FAIA200388
https://doi.org/10.3233/FAIA200388
https://doi.org/10.3233/FAIA200388
https://doi.org/10.3233/FAIA200388
https://doi.org/10.3233/FAIA200388
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.1109/JSYST.2019.2906120
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162
https://doi.org/10.1080/19361610.2020.1796162


Strengthening Deep-Learning-Based Malware Detection Models Against. . . 219

13. “Internet Security Threat Report”. NortonLifeLock Inc., Tempe, Arizona, U.S. Accessed: Jun.
15, 2021. [Online]. Available: https://docs.broadcom.com/doc/istr-22-2017-en

14. I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative Adversarial Networks”,
arXiv:1406.2661 [stat.ML], Jun. 2014.

15. “How Many Computers Are There in the World?”, Aug. 9, 2019. Accessed: Aug. 20,
2021. [Online]. Available: https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-
in-the-world

16. Wikipedia Contributors. “Autoencoder”, in Wikipedia, The Free Encyclopedia. Accessed: Nov.
24, 2021. [Online]. Available: https://en.wikipedia.org/wiki/Autoencoder

17. Wikipedia Contributors. “Generative adversarial network”, in Wikipedia, The Free Encyclope-
dia. Accessed: Nov. 24, 2021. [Online]. Available: https://en.wikipedia.org/wiki/Generative_
adversarial_network

18. A. Shalaginov and K. Franke, “A deep neuro-fuzzy method for multi-label malware classifica-
tion and fuzzy rules extraction,” 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), 2017, pp. 1–8, https://doi.org/10.1109/SSCI.2017.8280788.

19. J. Lanchantin, T. Wang, V. Ordonez, et al., “General Multi-label Image Classification with
Transformers”, arXiv:2011.14027 [cs.CV], Nov. 2020.

https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://docs.broadcom.com/doc/istr-22-2017-en
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://www.scmo.net/faq/2019/8/9/how-many-compaters-is-there-in-the-world
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788
https://doi.org/10.1109/SSCI.2017.8280788

	Strengthening Deep-Learning-Based Malware Detection Models Against Adversarial Attacks
	1 Introduction
	2 Background
	3 Proposed Design
	3.1 Creation of Malware Images
	3.2 Autoencoder
	3.3 GAN
	3.4 Malware Classifier

	4 Experiments
	4.1 Dataset
	4.2 Experiment Details

	5 System Evaluation and Results
	6 Conclusion and Future Scope
	References


